(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(X) → g(h(f(X)))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → g(X)
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
mark(f(X)) →+ a__f(mark(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / f(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(X) → g(h(f(X)))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → g(X)
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
g/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__f(X) → g
mark(f(X)) → a__f(mark(X))
mark(g) → g
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
a__f(X) → g
mark(f(X)) → a__f(mark(X))
mark(g) → g
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
Types:
a__f :: g:f:h → g:f:h
g :: g:f:h
mark :: g:f:h → g:f:h
f :: g:f:h → g:f:h
h :: g:f:h → g:f:h
hole_g:f:h1_0 :: g:f:h
gen_g:f:h2_0 :: Nat → g:f:h
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
mark
(10) Obligation:
TRS:
Rules:
a__f(
X) →
gmark(
f(
X)) →
a__f(
mark(
X))
mark(
g) →
gmark(
h(
X)) →
h(
mark(
X))
a__f(
X) →
f(
X)
Types:
a__f :: g:f:h → g:f:h
g :: g:f:h
mark :: g:f:h → g:f:h
f :: g:f:h → g:f:h
h :: g:f:h → g:f:h
hole_g:f:h1_0 :: g:f:h
gen_g:f:h2_0 :: Nat → g:f:h
Generator Equations:
gen_g:f:h2_0(0) ⇔ g
gen_g:f:h2_0(+(x, 1)) ⇔ f(gen_g:f:h2_0(x))
The following defined symbols remain to be analysed:
mark
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_g:f:h2_0(
n4_0)) →
gen_g:f:h2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
mark(gen_g:f:h2_0(0)) →RΩ(1)
g
Induction Step:
mark(gen_g:f:h2_0(+(n4_0, 1))) →RΩ(1)
a__f(mark(gen_g:f:h2_0(n4_0))) →IH
a__f(gen_g:f:h2_0(0)) →RΩ(1)
g
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
a__f(
X) →
gmark(
f(
X)) →
a__f(
mark(
X))
mark(
g) →
gmark(
h(
X)) →
h(
mark(
X))
a__f(
X) →
f(
X)
Types:
a__f :: g:f:h → g:f:h
g :: g:f:h
mark :: g:f:h → g:f:h
f :: g:f:h → g:f:h
h :: g:f:h → g:f:h
hole_g:f:h1_0 :: g:f:h
gen_g:f:h2_0 :: Nat → g:f:h
Lemmas:
mark(gen_g:f:h2_0(n4_0)) → gen_g:f:h2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_g:f:h2_0(0) ⇔ g
gen_g:f:h2_0(+(x, 1)) ⇔ f(gen_g:f:h2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_g:f:h2_0(n4_0)) → gen_g:f:h2_0(0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
a__f(
X) →
gmark(
f(
X)) →
a__f(
mark(
X))
mark(
g) →
gmark(
h(
X)) →
h(
mark(
X))
a__f(
X) →
f(
X)
Types:
a__f :: g:f:h → g:f:h
g :: g:f:h
mark :: g:f:h → g:f:h
f :: g:f:h → g:f:h
h :: g:f:h → g:f:h
hole_g:f:h1_0 :: g:f:h
gen_g:f:h2_0 :: Nat → g:f:h
Lemmas:
mark(gen_g:f:h2_0(n4_0)) → gen_g:f:h2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_g:f:h2_0(0) ⇔ g
gen_g:f:h2_0(+(x, 1)) ⇔ f(gen_g:f:h2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_g:f:h2_0(n4_0)) → gen_g:f:h2_0(0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)